weight vector.

5

## What Is Claimed Is:

1. A method for formatting received data within an adaptive broadcast radar system having a transmitter comprising sub-apertures and a receiver comprising sub-apertures, wherein said data is received at said receiver, comprising:

providing an estimate for a delay of scattered signal components within said received data;

generating an index for said estimate, wherein said index includes a transmitter element number and a receiver element number;

generating a data quad for said index; and
estimating a measurement covariance and a weight vector for said data quad,
wherein said data quad is reformatted with said measurement covariance and said

- 2. The method of claim 1, further comprising compensating said receiver data for a motion of said transmitter or said receiver.
- 3. The method of claim 2, further comprising removing a doppler shift from said receiver data.
- 4. The method of claim 1, further comprising estimating a direct path component from said received data.

- 5. The method of claim 4, further comprising cancelling said direct path signal from said received data.
- 6. The method of claim 1, wherein said received data includes a code encoded by said transmitter, said code including information about said transmitter.
- 7. The method of claim 6, wherein said information includes degrees of freedom.
- 8. The method of claim 1, further comprising segmenting said received data according to a coherent processing interval.
- 9. The method of claim 8, wherein said segmented data correlates to said estimate.
- 10. The method of claim 1, wherein said estimate further includes a doppler delay.
- 11. The method of claim 1, further comprising determining said weight vector from a steering vector.

5



- 12. The method of claim 1, wherein said estimating a measurement covariance includes using a channel transfer function.
- 13. A method for obtaining target parameters within an adaptive broadcast radar system, comprising:

coding information about a signal waveform generated by a transmitter having sub-apertures;

receiving a signal at a receiver having sub-apertures corresponding to said sub-apertures of said transmitter, wherein said received signal correlates to said signal waveform;

decoding information about said signal waveform from said received signal; determining a data quad from said decoded information, wherein said data quad includes degrees of freedom associated with said transmitter.

- 14. The method of claim 13, further comprising generating said signal waveform within said sub-aperture of said transmitter.
- 15. The method of claim 13, further comprising applying a phase shift to said signal waveform within said transmitter sub-apertures.
- 16. The method of claim 15, further comprising applying a weight vector to said signal waveform within said transmitter sub-apertures.

- 17. The method of claim 16, further comprising motion compensating said received signal by removing said weight vectors and said phase shifts.
- 18. The method of claim 13, wherein said received signal is a composite of transmitted signal from said signal waveform.
- 19. The method of claim 13, further comprising generating a channel transfer function comprising delay and doppler signal components of said received signal.
- 20. The method of claim 19, wherein said determining includes formatting said channel transfer function with a weight vector and measurement covariance of said received signal.
- 21. The method of claim 20, wherein said signal waveform is transmitted as an orthogonal waveform.
- 22. A method for generating a sensor signal model for a received signal within an adaptive broadcast radar system, comprising:

defining a clutter component for said received signal at a receiver, wherein said clutter component comprises a direct path signal and a scattered signal;



10

defining a channel transfer function;

generating a sampled version of said received signal according to said channel transfer function at a sample time;

determining a batch of data from said sampled version for a sub-aperture of said receiver at said sample time; and

indexing said batch of data into said sensor signal model.

- 23. The method of claim 22, wherein said sensor signal model is a linear system model.
- 24. The method of claim 22, wherein said batch of data includes a delay.
- 25. The method of claim 22, further comprising linearizing a phase delay within said channel transfer function to determine a doppler shift component for said received signal.
- 26. The method of claim 25, further comprising absorbing said phase delay into said channel transfer function.
- 27. The method of claim 25, wherein said phase delay correlates to a direction of clutter relative to said receiver.

5

28. A method for transmitting a signal waveform from a transmitter within an adaptive broadcast radar system, wherein said transmitter comprises at least one sub-aperture, comprising:

generating said signal waveform at said at least one sub-aperture;

coding said signal waveform at said at least one sub-aperture, wherein said signal waveform is coded with transmitter data;

phase shifting said signal waveform at said at least one sub-aperture; and transmitting said coded signal waveform from an array element coupled to said sub-aperture according to said phase shifting.

- 29. The method of claim 28, further comprising applying a weight vector to said signal waveform at said at least one sub-aperture.
- 30. The method of claim 28, wherein said transmitter data includes the degrees of freedom associated with said transmitter.
- 31. The method of claim 28, further comprising creating a train of pulses from said signal waveform within said transmiter, wherein said train of pulses are coded.

Attorney Docket No. 85700-0054

32. A method for performing radar operations within an adaptive broadcast radar system, wherein said radar system includes a transmitter having a first plurality of sub-apertures and a receiver having a second plurality of sub-apertures, comprising:

encoding data on a signal waveform at SAID transmitter, wherein said data includes a number for said sub-apertures of said transmitter and degrees of freedom for said transmitter;

continuously transmitting said signal waveform;

determining a delay value and a doppler value for received signals at said receiver, wherein said received signals comprise direct and scattered, signals of said signal waveform; and

regenerating a transmit signal beam correlating to said signal waveform from said received signals using said data, said delay value and said doppler value.

- 33. The method of claim 32, further comprising shifting a phase of said signal waveform prior to said transmitting.
- 34. The method of claim 33, further comprising removing said phase from said received signals.

- 35. The method of claim 32, further comprising adding a weight vector to said signal waveform prior to said transmitting.
- 36. The method of claim 35, further comprising removing said weight vector from said received signals.
- 37. The method of claim 32, wherein said encoding comprises orthogonal encoding.
- 38. The method of claim 32, wherein said encoding comprises pseudo-orthogonal encoding.
- 39. The method of claim 32, further comprising generating a steering vector for said transmit signal beam.
- 40. The method of claim 32, further comprising generating a weight vector for said transmit signal beam.
- 41. The method of claim 32, further comprising controlling said transmit signal beam from said receiver.



- 42. The method of claim 32, further comprising scattering said signal waveform from a target to generate said scattered signals.
- 43. The method of claim 32, wherein said transmitter is in motion.
- 44. The method of claim 32, wherein said receiver is in motion.
- 45. The method of claim 32, further comprising generating a data quad comprising said data, said delay value, and said doppler value.
- 46. An adaptive broadcast radar system, comprising:

a transmitter comprising a first plurality of sub-apertures, wherein each subaperture codes a signal waveform with data; and

a receiver comprising a second plurality of sub-apertures coupled to a signal processor, wherein said signal processor generates a transmit beam signal according to said data within each signal waveform.

